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Abstract. The concept of Painleve chains is extended to chains of ordinary differential 
equations obtained by successive and simultaneous differentiation of both sides of equations 
of the general typef(x, U, U,, u z , .  . . . , u o y )  = g(x, U, U,, u z , ,  . . . , U,,,,) where m s n - 1. The 
three Painlevt chains of my previous paper are thus generated by such successive differenti- 
ation of u 2 ,  = k u 2  ( K d V  chain), u~~ = ku3 (modified K d V  chain) and U, = ku2 (Burgers 
chain). Hybrid Painlevi chains can be analogously obtained by successive differentiation 
of hybrid differential equations; such chains obtained from u 2 ,  = - u u ,  +U’ and U*, = 
-3uu, - u 3  are described in detail. Passive differential equations in which the balancing 
exponent must depend upon the coefficients can also lead analogously to Painleve chains 
as illustrated by those obtained from u Z r =  k u t / u  where k = 2  or f .  The Schwarzian 
derivative ( u , . , / u , )  - ~ ( U ~ ~ / U , ) ~  generates a Painleve chain in which the members have 
consecutive integral resonances starting with the ubiquitous - 1. Chains of higher-order 
differential equations exhibiting some, but not all, of the features of Painleve chains can 
be obtained from the second-order eigenvalue problem. The dominant truncations of most 
evolution equations as well as the Painlevi canonical equations including the irreducible 
Painlevt transcendents appear in Painlev6 chains generated by the methods outlined in 
this paper. 

1. Introduction 

In recent years a certain class of non-linear higher-order partial differential equations, 
known as evolution equations [ 1-51, has become of special interest to theoretical 
physicists. Such equations possess a special type of elementary solution taking the 
form of localised disturbances which act somewhat like particles and are therefore 
known as solitons. These equations have applications in diverse areas of physics 
including fluid dynamics, ferromagnetism, quantum optics and crystal dislocations. 

Solution of important evolution equations frequently involves the so-called inverse 
scattering transform [ 1-61. In this connection the development of simple methods for 
identifying differential equations solvable by this approach is of interest. Thus Ablowitz 
et al [7,8] proposed the Painlev6 conjecture stating that such solvable ordinary 
differential equations (ODE) must have the Painlev6 property, namely the location of 
their critical points (i.e. singularities other than poles) must be independent of the 
constants of integration. Subsequently Weiss et a1 [9] showed how the Painlev6 property 
could also be defined for partial differential equations (PDE) .  Algorithms have been 
developed in order to determine whether a given ODE [8] or PDE [9] has the Painleve 
property. 
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In a previous paper [ lo]  I derived three PainlevC chains which can be used to 
generate higher-order ordinary differential equations having necessary conditions for 
the PainlevC property. These PainlevC chains relate directly to the first two irreducible 
PainlevC transcendents [ 111 and  the most important evolution equations including the 
Burgers, Korteweg-de Vries ( K d v ) ,  modified K d v  and Boussinesq equations. The 
present paper develops and extends further the concept of PainlevC chains including 
relationships with Schwarzian derivatives [ 12- 151 and the second-order eigenvalue 
problem [3] of Zakharov and  Shabat [16]. 

2. The Painleve test 

A solution of an  ordinary differential equation may have a number of singularities 
which are movable or fixed depending upon whether or not their locations depend 
upon the constants of integration [7-9, 111. A singularity that is not a pole (of any 
order) is called a critical point: such critical points may be algebraic or logarithmic 
branch points or  essential singularities. An ordinary differential equation has the 
PainlevC property if it has n o  movable critical points. The singular point analysis for 
testing whether or not an  ordinary differential equation of order n has the PainlevC 
property consists of the following three steps: (1) determination of the dominant terms 
of the differential equation and  its balancing exponent p in a power series which 
characterises the behaviour of its solutions near the movable singularities; (2) solution 
of an  indicial equation to determine the resonances r , ,  . . . , r,, which indicate the terms 
where the integration constants can enter the above power series; and  (3) determination 
whether the coefficients of the above power series are compatible with a pure Laurent 
series [ 171 without any logarithmic terms entering at the resonances. The PainlevC test 
can fail at any of these three steps as follows: (1) the balancing exponent p is not a 
negative integer; (2) the resonances are not integers or  the indicial equation has a 
repeated root; or (3) the expressions for the coefficients of the power series terms at 
the resonances are incompatible with the identical zero values required for introduction 
of the integration constants. The first two steps of the singular point analysis are 
relatively simple since they require consideration of only the dominant terms of the 
ordinary differential equation, called [ 101 its dominant truncation. However, the third 
step requires the full differential equation and is thus much more tedious and compli- 
cated. The general idea behind the work discussed in this paper, as well as my previous 
paper [ lo]  is to obtain the maximum information about higher-order differential 
equations from the first two steps of the PainlevC test, which are relatively easy. Thus 
the idea of PainlevC chains relates to the classification of higher-order ordinary 
differential equations into dominance classes having the same dominant truncations 
and then determining which dominance classes satisfy the first two of the three steps 
of the above PainlevC test. 

Consider an evolution equation of the form 

U, =&/at U,. = (a/ax)’u j = O , l ,  . . . ,  n. ( 2 )  
In such partial differential equations U may be regarded as an  amplitude, x as a 
distance and  r as time. Setting U, = 0 leads to time-independent solutions corresponding 
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to ordinary differential equations of the type 

f ( x ,  U ,  4, U Z r ,  . . ' , Ufl.Y) = 0. (3)  
Let us adjust the distance scale so that z ( x )  = O  is a critical point. The dominant 
behaviour of solutions of this ordinary differential equation in the neighbourhood of 
such a critical point can be expressed as the following series: 

U = aOzP as z+O.  (4) 

Substitution of equation (4) into the original ordinary differential equation (equation 
(3)) shows that for certain values of the balancing exponent p ,  two or more terms may 
balance and the rest can be ignored as z + 0. Deletion of the terms not involved in 
the balancing in general leads to a simpler ordinary differential equation called the 
dominant truncation of the original differential equation. All equations giving the same 
dominant truncation may be considered to form a dominance class. A self-dominant 
equation is one in which all of its terms are involved in the balancing and is therefore 
identical to its dominant truncation. 

The balancing exponent p may be determined either actively or passively depending 
upon the differential equation in question. Active determination of p results when the 
exponents of the balancing terms are different expressions in p so that an equation is 
generated by equating the different expressions for the same exponent; solution of this 
equation then determines p .  Passive determination of p occurs when the exponents 
of all of the balancing terms are the same expression in p so that they do  not generate 
an equation to be solved for p .  In these cases p must be determined from an expression 
arising from the coefficients of the balancing terms. In all of the differential equations 
discussed in the previous paper [ 101 the balancing exponent p is determined actively. 

Now consider the dominant truncation of the ordinary differential equation in 
question (e.g., equation (3)) which may be represented as 

( 5 )  

Equation (4) may then represent the first term in a Laurent series [17] valid in a deleted 
neighbourhood of movable pole. In this case a solution of the original ordinary 
time-independent differential equation (3 )  is of the following type: 

f * ( x ,  U ,  U , ,  U Z X ,  * .  . , %x) = 0. 

X 

u = z P  akzk where z # 0. 
k = O  

The position of the singularity z = 0 corresponds to one of the n integration constants. 
If n - 1 of the coefficients ak are also arbitrary, the n integration constants of equation 
(3)  are then accounted for and equation (6) represents the general solution of the 
time-independent equation (3) in the deleted neighbourhood of the singularity z = 0. 
The powers of z at which these arbitrary constants enter are called the resonances and 
will be designated as r, , r 2 ,  . . . , r, so that r, S rk and i < k. In a similar Laurent series 
expansion of the original time-independent partial differential equation ( l ) ,  the 
coefficients ak must be assumed to be functions of x and r rather than constants. 

In order to find the resonances, the following equation for U is substituted into the 
dominant truncation (equation ( 5 ) ) :  

(7)  
In the usual case of equations linear in U,, the coefficient a, is determined by equating 
the coefficents of the zPen terms which are the leading terms in the neighbourhood of 

U = aOzP + a,zp+'. 
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z = O .  I f  the balancing exponent p is determined passively, then the value of the 
coefficient a, will be arbitrary and one of the resonances will be zero. After determining 
a, then the coefficients of the next higher powers zP+'-" are equated in order to 
determine the resonances. In this way the resulting equations for the resonances reduce 
to 

Q( r )a , zq  = 0 q C p + r - n  (8) 
in which Q ( r )  is a polynomial in r of degree n. The roots of Q ( r )  determine the 
resonances since Q( r )  = 0 corresponds to the 'indicia1 equation' used to solve a linear 
ordinary differential equation near a regular singular point [18]. One root of Q ( r )  
will always be -1 reflecting the arbitrariness of the singularity z = 0 corresponding to 
one of the n integration constants. In cases where the balancing exponent p is 
determined passively rather than actively, a second root of Q( r )  will be zero reflecting 
the arbitrariness of a, in these cases. A requirement for the PainlevC property is that 
all resonances r , ,  . . . , r, be distinct integers (no multiple roots). Furthermore only 
integers greater than -1 (i.e. zero or positive integers) indicate terms in the power 
series of equation ( 6 )  which can incorporate integration constants in their coefficients. 

The final step of the PainlevC test consists of determining the coefficients of the 
power series (equation (6)) from a, up  to the coefficient of the last resonance a,,,. 
Because the full partial differential equation (e.g., equation (1) )  must be used rather 
than the dominant truncation of the time-independent ordinary differential equation, 
this step is considerably more complicated than the first two steps and computer 
methods are often needed for the messy algebra [ 191. The PainlevC property requires 
compatibility conditions to be satisfied at each of the positive integer resonances; in 
this case arbitrary integration constants can be introduced at each of the resonances 
without affecting the Laurent expansion (equation (6) ) .  Failure to satisfy such compati- 
bility conditions means that logarithmic terms must be introduced at the offending 
resonances leading to movable logarithmic branch points in violation of the PainlevC 
property. Since the spacing of the resonances determines the introduction of the 
integration constants in the power series expansion (equation (6) ) ,  the power series 
for solutions of differential equations having the same resonances r, and the same 
balancing exponent p might be expected to exhibit some similar features. In  addition, 
the Schwarzian PainlevC chain discussed later in this paper has a prototypical role 
since the resonances in members of this PainlevC chain appear consecutively from the 
first term on so that all of the resonances appear in the power series before any 
non-resonant terms. The members of the Schwarzian PainlevC chain are in the same 
dominance classes as higher-order differential equations based on the Schwarzian 
derivative used by Weiss [ 141 to study higher-order evolution equations including 
seventh-order analogues of the K d v  equation. 

3. The canonical Painleve type equations 

Around the turn of the century Painleve and his coworkers examined second-order 
ordinary differential equations of the following form for the absence of movable critical 
points [ 111. 

( 9 )  
Assuming F (  U , ,  U, x )  to be rational in U, and U and analytic in x, they found that 
equations of this type without movable critical points could be represented as one of 

U:, = F (  U,, U, x) .  
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50 canonical types, designated Ell] by the Roman numerals I to L. Among these 50 
types, six could not be reduced to simpler differential equations and thus defined new 
transcendental functions; these irreducible second-order differential equations are the 
PainlevC transcendents P I ,  P I I ,  P I , , ,  P l v ,  Pv and P v l ,  corresponding to the canonical 
forms IV, IX, XIII, XXXI, XXXIX, and L, respectively, in Ince’s book [ l l ] .  The six 
PainlevC transcendents and some of the properties of the first four PainlevC transcen- 
dents are listed in table 1 .  

The dominant truncations of the 50 canonical PainlevC type equations are com- 
posed of the following four building blocks with the indicated values of the balancing 
exponent p: 

u2x = k,u2 ( p  = -2/ 1 = -2) ( l oa )  

~2~ = k b U U ,  ( p =  - 1 / 1 =  - 1 )  (106) 

u2x = k,u3 (10c) 

u2x = k d u : / u  ( p  indeterminate from the exponents). (10d) 

( p = -2/2 = - 1 )  

Since equations (lob) and (1Oc) have the same value of p, namely -1,  hybrids [lo] 
of the following form can be obtained from their linear combination: 

u2x = h,uu,+h2u3.  ( 1 1 )  

The solution branches of such hybrid equations are determined by the roots of a 
quadratic equation with coefficients depending upon the coefficients h ,  and h2 of 

Table 1. The six irreducible PainlevC transcendents. 

Number PainlevC transcendent 
Balancing 

Dominant truncation exponent Resonances 

PI ulr: = 6 u 2 + x  u~~ = 6u2 -2 - 1 ,  +6 
4 I u2ri = 2u3 + ux + a u2.; = 2u3 - 1  - 1 ,  +4 
PI,, u2< = u:f u - u , J u + ( a u 2 +  b ) f x  UZr = u : / u  + cu3 - 1  - 1 ,  +2  

PI v u2* =u:J2u+3u3f2+4u2x u2,=u2,f2u+3u’J2 - 1  - 1 ,  +3 
+ cu3 + d J U 

+ 2x2 - 2 a  + b / u  

( U  - 1 1 2  

X 2  
+- ( a u  + b / u )  

+ c u J x +  eu( u + I ) J u  - 1 

U U - 1  U-x 

u ( u - l ) ( u - x )  
x 2 ( x - l ) 2  

+ 
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equation (1 1). Unless the two roots of this quadratic equation coincide, the correspond- 
ing hybrid equation (1  1) has two distinct solution branches. Thus the set of coefficients 
h ,  = -1 and  h2 = +1 for equation (1 I )  leads to a, = +1 and  +2 for the two solution 
branches when U is expressed as the power series in equation (4) and  corresponds to 
the dominant truncation of the canonical Painlevi type equation X(table 2 )  which has 
‘semitranscendental’ solutions [ 111. Similarly the set of coefficients h ,  = -3 and h ,  = -1 
for equation (1 1)  leads to a, = +1 and -2 for the two solution branches and  corresponds 
to the dominant truncation of the Painlevi canonical equation VI (table 2 )  which has 
solutions [ l l ]  of the form 

U = - w , / w  (12) 

w”’ = q ( x ) w ” .  (13) 

when w ( x )  is the general solution of the linear equation of the third order. 

Equation (10d) is passive; since it does not determine the balancing exponent p it can 
hybridise with any of the other building blocks, namely equations ( loa ) - (  1Oc). 

Table 2. The first ten canonical Painleve-type equations. 

Dominant Balancing Solution 
Number Equation truncation exponent Resonances type” 

I uzl: = o  

u~~ = 6u‘ -2 

V UZ1; = - 2 u u ,  + q ( x ) u ,  + r ( x ) u  u 2 ,  = - 2 u u ,  
VI UZI. = - 3 u u , - u 3 + q ( x ) ( u ~ - u 2 )  U 2 r = - 3 u u , - u 3  - 1  

u 2 ,  = 2 u 3  - 1  
VI1 U 2 r  = z U 3  

VI11 
IX 
X u 2 ,  = - u u , + u 3 -  1 2 q u + 1 2 r  u 2 , = - u u , + u 3  - 1  

- 1  
I I1 uzy = 6 u 2  

111 u~~ = 6 u 2 + f  
IV uzI. = 6 u 2 +  x 

I u 2 ,  = Z u 3 +  bu + c 
u2r; = 2u3  + ux  + c 

trivial 
elliptic 

- 1 ,  +6 elliptic 
PI 

- 1 ,  + 2  semitrans 
-1, +1 

- 1 ,  +4 elliptic 

-1, +3b semitrans 
p,  I 

-1, +tib 

a Elliptic = solution expressed as elliptic functions, PI and PI, =irreducible Painlect transcendents (table I ) ,  
semitrans = semitranscendental. 

Two branches, each of which has - 1  as the only non-positive resonance. 

The dominant truncations of the last 40 of the 50 canonical PainlevC-type equations 
(i.e., XI  to L in Ince’s notation [ l l ] )  contain passive terms of the type u’ , /u  (i.e., 
equation 10d)  and will not be considered further here. The dominant truncations of 
the first ten canonical PainlevC-type equations contain only one or  more of the active 
terms (equations (lOu)-(lOc)) and are listed in table 2. In addition to the required 
-1, the resonances found in these equations include the positive integers 1, 2, 3 , 4  and 
6 for p = -1 and  6 for p = -2 .  Thus a variety of power series expansion behaviour is 
possible in even these relatively simple systems. 

4. Painleve chains 

The following procedure can be used to generalise the concept of PainlevC chains 
introduced in the previous paper [lo]. Consider a differential equation of order n 



Painleue' chains fo r  higher-order differential equations 2339 

written in the following form: 

f ( x ,  ux, ~ 2 x 9 .  9 u n x )  = g ( x ,  U, U , ,  ~ 2 x 9 .  * ., urn,) where m s n - 1. (14) 

Furthermore, require equation ( 14) to have the following properties. 
(1) Equation (14) has the PainlevC property with resonances -1, r 2 , .  . . , r,,. 
( 2 )  Functions f and g are algebraic functions involving only sums, differences, 

products and  quotients of their variables; transcendental functions such as exponentials, 
logarithms and  trigonometric functions are not present in f and g. 

(3) The function f ( x ,  U, U % ,  U * , , .  . . , u , ~ )  includes all of the terms containing the 
highest derivative U,, and no terms not containing u,~; the equation f =  0 is thus an  
ordinary differential equation of order n. 

(4) The function g ( x ,  U ,  U,, u Z r , .  . . , U,,,,) contains no terms with the highest deriva- 
tive U,,,; the equation g = 0 is thus an  ordinary differential equation of order m C n - 1 
called the co-order [lo] of equation (14). 

( 5 )  The function g ( x ,  U ,  U , ,  u Z r , .  . , , u m x )  cannot be obtained by differentiation of 
any function h ( x ,  U ,  U , ,  u 2 , , .  . . , u , , , , - ~ ) , )  which is an  algebraic function of its variables. 

Equation (14) defined in this manner can be the generator of a Painlev6 chain 
where the members of the chain are obtained by successive and  simultaneous diff erenti- 
ation of both sides of equation (14). Each differentiation step in a PainlevC chain 
retains all of the resonances of the previous members but adds one new resonance 
reflecting the position in the power series (equation (6)) of the new integration constant. 
In the relatively simple PainlevC chains discussed in this paper, where f =  U , ,  in 
equation (14), the new resonance appears at n - p -  1. When the new resonance 
duplicates an  existing resonance, the PainlevC property is destroyed and  the PainlevC 
chain is terminated. The number of equations in the PainlevC chain without double 
resonances is called its length and the order of the last member of the chain without 
a double resonance is called the order of the chain. 

The previous paper [ 101 presents the three fundamental homogeneous PainlevC 
chains listed in table 3. The dominant truncations of the first two irreducible PainlevC 
transcendents, namely u 2 ,  = k,u2 from PI (equation ( loa) )  and  uZy = k,u3 from PI, 

Table 3. The three fundamental homogeneous Painleve chains. 

- 
2/2 Chain ( p  = -1;  modified K ~ V ;  length 2; order 3 )  
u 2 ,  = ku' * u , , = k u 2 u ,  ----+ u 4 , = k ( 2 u ~ t + u 2 u 2 , )  
(-1, +4) (-1, + 3 ,  +4) (-1, + 3 ,  +4, + 4 )  

Dominant truncation Modified Kdv Double resonance (+4)  
of Painleve P,, 

1 /1  Chain ( p  = - 1 ;  Burgers; infinite length and order) 
u , = k u Z  - u , , = k u u ,  u , , x ~ ( u u , , + u ~ )  A u , , = ~ ( u u , , + ~ u , u , , )  - 
(-1) (-1, + 2 )  ( - 1 ,  + 2 ,  + 3 )  ( - I ,  + 2 ,  + 3 ,  +4) 

Dominant truncation 
of Burgers 

2/1 Chain (p  = -2, K ~ V ;  length 3; order 4 )  
u , , = k u 2  ___* u , , = k u u ,  w u , , = k ( u f + u u , , )  ---+ u , , = ~ ( ~ u , u ~ , + u u , , )  
(-1. + 6 )  ( - I ,  +4, + 6 )  ( - I ,  +4, + 5 ,  + 6 )  (-1, +4, + 5 ,  +6, + 6 )  

Dominant truncation Kdv  

of Painleve P, 
Boussinesq Double resonance ( + 6 )  
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(equation (1Oc)) generate the chains containing the modified Kdv equation ( p  = -212) 
and Kdv equation ( p  = -2/1) having orders 3 and 4, respectively. The other 
homogeneous and active dominant truncation of the second-order canonical Painlevi- 
type equations, namely u2, = kbuu, (equation ( lob)) ,  which is also the dominant 
truncation of Burger’s equation, is the second member of a Painlevi chain ( p  = -11 1) 
of infinite order generated from the first-order differential equation U, = ku2.  

The hybrid dominant truncations of the canonical Painlevi-type equations in table 
2 can also be generators of Painlevi chains (table 4). Since these chains are hybrids, 
they have two solution branches although these branches can coalesce in exceptional 
cases (see the previous section). In the case of the solution branches of the Painlevi 
chain generated from u2x = -uu, + u3 one solution branch, namely that with a, = 1 in 
equation (4), has only one member before +3 becomes a double root and thus has a 
length of only one whereas the other solution branch, namely that with a, = -2 in 
equation (4), goes to order six before a double root ( + 6 )  arises. The hybrid Painlevi 
chain generated from u2x = -3uu, - u3  has a solution branch, namely that with a, = +2 
in equation (4), which has a -2 resonance indicating that one of the integration 
constants cannot be accommodated in the power series expansion for U (equation (6)). 
The equations in the hybrid Painlevi chains in table 4, unlike those in the homogeneous 
Painlevi chains in table 3, do not appear to relate to differential equations of obvious 
physical significance. 

Table 4. Hybrid PainlevC chains ( p  = -1).  

Resonances 

Equation a = l  a = i 2  

u2,v = + u3 

U3,r=-U:-uu21:+3U2U, 
1 

1 
ulX -3~~~2, - U U ~ , ,  + ~ u u :  + ~ u ~ u , ,  

-1, +3 - 1 ,  +6 

-1, +3, +3  -1,  +3, +6 

- 1 ,  +3, +3, +4  -1,  +3, +4, +6 
1 

us, = - u u ~ , ~  - ~ u , u ~ , - ~ u ~ , + ~ u : + ~ ~ u u , u , , + ~ u ~ u ~ ,  -1, +3, +3, +4, +5  - 1 ,  +3,  +4, +5, +6 

UZr; = -3uu,v - u 3  

u3,T = - 3 4  -3uu2,  -3u211x 
.1 

- 1 ,  +1 -1 ,  -2 

- 1 ,  + 1 ,  +3  -1,  -2, +3  
J 

ulr = - 9 U , U 2 r  - 3 ~ ~ 3 , - 6 ~ ~ 2 , - 3 u ~ ~ 2 ,  - 1 ,  + 1 ,  +3, +4  

- 1 ,  + 1 ,  + 3 , + 4 , + 5  - 1 , + 2 , + 3 , + 4 , + 5  

- 1 ,  -2, +3, +4  
1 

us, = -3uu4, - 12u,u3, -94, - 6 ~ : -  18uu,u2, -3u2u3,  

Passive Painlevi chains can also be generated from the Painlevt canonical equations. 
Consider the following pure passive second-order differential equation: 

u2, = ku:/ U. (15)  

The value of k determines the value of p in the expansion in equations (4) and (6) 
according to the relationship 

(16) k = ( p  - 1)lp. 
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Table 5. The passive Painlev6 chains. 

Equation Balancing exponent, p Resonances 

- 1  

- 1  

- 1  

- 1  

- 1  

-2 

-2 

-2 

-2 

- 1 , O  

- l , O , + 4  

-1,o, +4, +5 

- I , O ,  +4, + 5 ,  +6 

-1 ,O,  +4, + 5 ,  +6, + 7  

- l , o  

-1,O. +6 

- 1 , O ,  +6, + 7  

-1 ,O.  +6, +7, +8 

Table 5 shows the PainlevC chains derived from equation (15) for p = - l ( k  = 2) and 
p = -2(k = $). Note the infinite lengths of these chains and the zero resonances arising 
from the passive determination of the balancing exponent p.  The new resonances in 
the third-order equations of these PainlevC chains appear at 2 - 2 p  and the new 
resonances in the n th-order equations appear at 2 - 2 p  + n - 3 = n - 2p - 1 .  

5. A Schwarzian Painlev6 chain 

The Schwarzian derivative {U; x} is defined by the following expression: 

{U; X I  =,(d U,) -$<U,,/ U,),. (17) 

(18) 

Weiss [ 12-15] has related the Schwarzian derivative to integrable partial differential 
equations including the Burger's, Kdv, modified Kdv and Boussinesq equations. 

Table 6 shows how a PainlevC chain can be obtained from the Schwarzian derivative 
(equation (17)). Set the Schwarzian derivative { U ;  x} equal to zero and for convenience 

It is significant in being invariant under the Mobius transformation 

U'= (au + b ) / ( c u  + d ) .  

Table 6. The Schwarzian PainlevC chain ( p =  - 1 ) .  

Equation Resonances 
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multiply both sides by ut. to clear the terms in the denominators of equation (17 )  
thereby giving the first member of the PainlevC chain. The balancing exponent p is 
determined passively to be - 1 so that the coefficient is required for its determination. 
This third-order differential equation has the consecutive resonances r = -1, 0, $1, 
with the zero resonance arising from the passive nature of this equation. In order to 
obtain successive members of the Schwarzian PainlevC chain (table 6),  divide both 
sides by U:-', differentiate both sides and multiply both sides by U," to clear the terms 
in the denominator where n is the order of the starting differential equation. The 
resulting PainlevC chain is of infinite length and a member of the chain of order n has 
consecutive resonances r = -1, 0, +1 , .  . . , n -2, indicating that all of the integration 
constants might appear in the first n - 1 consecutive terms of a Laurent series (equation 
(6)) if compatibility conditions are satisfied at the resonances. This Schwarzian PainlevC 
chain contains the dominant truncations of the integrable class of partial differential 
equations 

(19) 

in which B is a constant coefficient multinomial in ( d k / a x k ) { u ;  x}. Weiss [14] has 
shown that these higher-order differential equations arising from the Schwarzian 
derivative are useful for generating the higher-order K d v  and other evolution equations 
of interest. 

u, /u ,+  B ( { u ;  x}) = 0 

6. Chains from eigenvalue problems 

The Painlev6 chains containing the K d v  and  modified K d v  equations each have finite 
lengths owing to the appearance of double roots in the indicial equation (8) used to 
determine the resonances. These double roots can be eliminated by hybridisation with 
an  appropriately chosen equation having the same balancing p or with a pure passive 
equation. For example, the fifth-order differential equation in the KdV Painlev6 chain 
( p  = -2/ 1) [ 101 namely 

us\- = k(3 uyu2y f uu3 ,) (20) 

has the resonances -1, +4, +5 ,  +6, +6 (table 3). The double root ( f6 )  can be eliminated 
by hybridisation [ 101 with the following equation: 

u5x  = 3mu2u,. (21) 

uqr; = mu'. (22) 

Equation (21) arises from the ( p  = -4/2) chain generated by differentiating 

In  the homogeneous form equation (22) does not have the PainlevC property since its 
indicial equation (8) has complex roots corresponding to complex resonances. 

A hybrid fifth-order higher KdV equation is well known [20] to have the following 
form: 

(23) 
Both solution branches of this hybrid equation have distinct integral resonances. The 
branch leading to the resonances -1, +2, + 5 ,  +6, +8 is the most significant since all 
of the (integral) resonances are greater than -1 indicating the possibility of incorporat- 
ing the integration constants into a Laurent expansion of U (equation (6)). 

~5~ = - ~ O U , U ? ,  - 10 U U ~ ,  - ~ O U * U , .  
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How can one determine the coefficients of hybrid equations such as equation (23 )  
which can have the Painlev6 property? Consider the second-order eigenvalue 
problem [ 3 ]  

U, = -ihv + qw ( 2 4 4  

U, = A V +  Bw ( 2 4 4  

w ,=CU-AW.  i 2 4 d )  

w, = rv+ihw ( 2 4 6 )  

Compatibility of conditions (24a) - (24d)  requires the following equations to be 
satisfied: 

A, = qC - r B  ( 2 5 a )  
B ,  + 2iAB = q, - 2Aq  ( 2 5 6 )  

C, -2 ihC = r, +2Ar. (25c )  

In order to obtain a chain of higher-order differential equations of potential interest, 
substitute the following power series for A, B and C into equations (25a) - (25c )  taking 
the integer n as high as the order of that of the desired differential equation: 

f l  

A =  1 Akhk ( 2 6 a )  
k = O  

n 

c= C k A k .  ( 26c )  
k=O 

Equate the coefficients of like powers of A in equations (25a) - (25c )  and solve the 
resulting 3n  + 5 equations. This procedure involves determining the 3n +3 coefficients 
of the power series (26a)- (26c)  in the following sequence: 

(27 )  Bn, Cn, An, B n - 1 9  Cn-lAn-1, * * .  9 B O ,  CO, AO. 
Determination of the coefficients Bk and ck ( n  -2  3 k 3 0) requires differentiations of 
Bk+, and c k + l ,  respectively, whereas determining each Ak ( n  3 k 2 0) requires an  
integration. The latter lead to the n integration constants designated as ak ( n  2 k 3 0). 
After all 3n  + 3 coefficients ( 2 7 )  are determined from the first 3n  + 3 equations, substitut- 
ing these coefficients into the last two of the original 3n + 5 equations (derived from 
equations (25b)  and ( 2 5 ~ ) )  gives equations in q, or r,, respectively, in which all of the 
other terms contain exactly one of the integration constants ak. Grouping together the 
terms containing a given ak while setting aj = 0 for all j f k and adding a new equation 
either relating q to r o r  setting q or  r to a constant gives a kth-order differential 
equation which in certain cases corresponds to known evolution equations [3] .  For 
example k = 3, r = -1 and  a, = 0 for j # 3 give the K d v  equation in q whereas k = 3,  
r = q and a, = 0 for j # 3 give the modified K d v  equation. This procedure is described 
in greater detail elsewhere [ 3 ] .  

Table 7 shows what happens when this procedure is done with fifth degree polynomial 
expansions of A, B and C ( n  = 5 in equations (26a) - (26c ) )  substituted in equations 
(25a)- (25c)  using the symmetrical relationship q = r after considering the time- 
independent situation where 4, = 0. The symmetry of the relationship q = r makes the 



2344 R B King 

Table 7. A time-independent chain from the 2 x 2 eigenvalue problem ( r  = q, p = - 1 )  

~~~ ~ 

Equation Resonances" Comments' 

a When there are two solution branches (i.e. for the fourth- and fifth-order equations which are hybrids) 
the solution branch having no resonances below - 1  is chosen. 

DT = dominant truncation. 

final two equations identical for each member of the chain. The equations in table 7 
are identical with the modified K d v  chain in table 3 for k S 3. For k S 4 hybridisation 
is automatically introduced by this procedure. These hybrids, at least for k = 4 and 
k = 5 ,  have integral resonances. The fifth-order modified K d v  equation was discovered 
by Ito [21] using a different method; this equation can also be obtained by differentiation 
of the fourth-order equation above it in the modified K d v  chain (table 7). 

Generation of the K d v  equation by an analogous method requires the relationship 
r = -1 which treats the variables q and r asymmetrically. This reduces the final two 
of the 3n + 5  equations from (26a)-(26c) and ( 2 5 a ) - ( 2 5 c )  to a single equation only if 
k is odd. The resulting single equations obtained for k = 3 and k = 5 are the dominant 
truncations of the K d v  equation and the fifth-order K d v  equation [20], respectively. 
The absence of even-order differential equations in the K d v  chain generated by this 
method is consistent with results obtained by using recursion [22] or differential [23] 
operators for finding higher-order Kdv equations. 

These observations suggest that the chain of K d v  equations contains only odd-order 
members whereas the chain of modified K d v  equations contains both even- and 
odd-order members. 

7. Summary 

The previous paper [ 101 defines the three fundamental homogeneous active Painleve 
chains (table 3) which are generated from the equations ulX = ku', uZx = ku3 and 
U, = ku2.  The present paper shows how the concept of PainlevC chains can be extended 
to Painlevi chains generated from hybrid differential equations (table 4) and the passive 
differential equation u2x = k u f ; / u  (table 5 ) .  In addition the Schwarzian derivative can 
be used to generate a Painlevi chain with the interesting property of consecutive 
integral resonances (table 6). Finally, the 2 x 2 eigenvalue problem of Zakharov and 
Shabat [16] is shown to generate chains exhibiting some but not all of the features of 
Painlevt chains. 
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